Schur Function Identities and Hook Length Posets
نویسندگان
چکیده
In this paper we find new classes of posets which generalize the d-complete posets. In fact the d-complete posets are classified into 15 irreducible classes in the paper “Dynkin diagram classification of λ-minuscule Bruhat lattices and of d-complete posets” (J. Algebraic Combin. 9 (1999), 61 – 94) by R. A. Proctor. Here we present six new classes of posets of hook-length property which generalize the 15 irreducible classes. Our method to prove the hook-length property is based on R. P. Stanley’s (P, ω)partitions and Schur function identities. Résumé. Dans cet article nous trouvons des nouvelles classes de posets qui généralisent les posets dcomplets. En fait, les posets d-completes sont classés en 15 classes irréducibles dans l’article “Dynkin diagram classification of λ-minuscule Bruhat lattices and of d-complete posets” (J. Algebraic Combin. 9 (1999), 61 – 94) par R. A. Proctor. Dans cet article nous présentons six nouvelles classes de posets ayant la propriété de longueur de crochet, qui généralisent les 15 classes irréductibles. Notre méthode pour prover la propriété de longueur de crochet est basée sur les (P, ω)-partitions de R. P. Stanley et identités de fonctions de Schur.
منابع مشابه
Quasisymmetric (k, l)-hook Schur functions
We introduce a quasisymmetric generalization of Berele and Regev’s hook Schur functions and prove that these new quasisymmetric hook Schur functions decompose the hook Schur functions in a natural way. In this paper we examine the combinatorics of the quasisymmetric hook Schur functions, providing analogues of the RobinsonSchensted-Knuth algorithm and a generalized Cauchy Identity. Résumé. Nous...
متن کاملThe Weighted Hook Length Formula III: Shifted Tableaux
Recently, a simple proof of the hook length formula was given via the branching rule. In this paper, we extend the results to shifted tableaux. We give a bijective proof of the branching rule for the hook lengths for shifted tableaux; present variants of this rule, including weighted versions; and make the first tentative steps toward a bijective proof of the hook length formula for d-complete ...
متن کاملGeneralizations of Han’s Hook Length Identities
Han recently discovered new hook length identities for binary trees. In this paper, we extend Han’s identities to binomial families of trees. Moreover, we present a bijective proof of one of the identities for the family of ordered trees.
متن کاملResults and conjectures on the number of standard strong marked tableaux
Many results involving Schur functions have analogues involving k-Schur functions. Standard strong marked tableaux play a role for k-Schur functions similar to the role standard Young tableaux play for Schur functions. We discuss results and conjectures toward an analogue of the hook-length formula.
متن کاملCombinatorial proofs for some forest hook length identities
Chen, Gao and Guo gave in a recent paper many interesting identities involving hook lengths of trees and forests using an extension of Han’s expansion technique. We give combinatorial proofs of some of these identities.
متن کامل